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Review and Introduction

Let y1, ..., yn denote n independent observations on a response.
Treat y; as a realization of a random variable Y;

In the general linear model we assume that

Yi ~ N(MM 02)

And we further assume that the expected value p; is a linear function
pi = Xip

The generalized linear model generalizes both the random and systematic component.

Components of Generalized Linear Models
All generalized linear models have three components:

e Random component
e Systematic component

e Link function

Random Component

The random component of a GLM identifies the response variable Y and selects a probability distribution
for it.

Denote the observations on Y by (Y1,Ys,...,Y,,). Standard GLMs treat Y7,Y53, ..., Y, as independent.
If the observations on Y are binary then we assume a binomial distribution for Y
In some applications, each observation is a count. Then we have Poisson or Negative Binomial

If each observation is continuous, we might assume a normal distribution for Y.



THE EXPONENTIAL FAMILY

Systematic Component
The systematic component of a GLM specifies the explanatory variables.
These enter linearly as predictors on the right-hand side of the model equation.

The systematic component specifies the variables that are the {x;} in the formula
a+ pizy + ..+ Brrg
Link Function

Denote the expected value of Y the mean of the probability distribution by u = E(Y)

The link function specifies a function g(.) that relates u to the linear predictors as

g(p) = a+ fia1 + ... + By
The function g(p) the link function connects the random and the systematic components.

The Exponential Family

We assume that observations come from a distribution in the exponential family with the following probability
density function:

[(yi; 05, 0) = ewp{ C?EZ) + c(yi, ¢)} (1)

Here 0;, ¢ are parameters and a(.),b(.) and ¢(.) are known functions.

The 0; and ¢ are location and scale parameters respectively.

Normal Distribution
The normal distribution is given as:

000:6) = —eapl =55 0= 1)*}

Which can be expressed as:

1 1
f(yi,0;,0) = exp [— 3 log(2mo?) — ﬁ(yf — 2y + M2)}

We can re-factor and have:

000 = () (5 o)

0, = 1,6 = 0%, ai(9) = 6,b(0:) = % c(y: ) = 3 (% +log(2mo?)
The mean is given as E(y;) = b'(6;)
The variance Var(y;) = b"(0;)a(¢)
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Exercises MAXIMUM LIKELIHOOD ESTIMATION OF GLM

Exercises

Exercise 1

The PMF of the Poisson distribution is given as:

e huY
y!

fylp) =

Show that the Poisson Distribution can be expressed as a member of exponential family and derive the mean
and variance.

Exercise 2

The PMF of the Binomial distribution is given as:
Y n—y
flyln,p) = ) )7 (1-p)

Show that the binomial Distribution can be expressed as a member of exponential family and derive the
mean and variance.

Exercise 3

The PMF of the Negative Binomial distribution is given as:
r+y—1
flylr,p) = ( y )p’“(l -p)?

Show that the negative binomial Distribution can be expressed as a member of exponential family and derive
the mean and variance.

Maximum Likelihood Estimation of GLM

Unlike for the general linear model, there is no closed form expression for the MLE of § in general for GLMs.

However all the GLMs can be fit using the same algorithm a form of iteratively re-weighted least squares

Given an initial value for 3 calculate the estimated linear predictor 7j; = z;8 and use that to obtain the
fitted values fi; = g~1(1j;). Calculate the adjusted dependent variable

. o dni
zi =M + (Yi — i)(5—
i+ (yi = i) (3 " )o
Calculate the iterative weights
dn;
wl = |V
T ( d/}[/Z ) T

where V; is the variance function evaluated at fi;

Regress z; on x; with weight W; to give the new estimate of g
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LOGISTIC REGRESSION

Logistic Regression
In logistic problems we are modeling binary data. The usual coding is that

Y € {1 ="Success or 0= "Failure}

The Binomial distribution is a good way to represent this kind of data.
The systematic component in our logistic regression model will be the binomial distribution.

We show that the binomial distribution belongs to the exponential family of distributions

F:0,0) = (1 )av -y

= exp [y log(L) +nlog(l — 7) + log <Z)}

1—m
Here

6 =log(~——)

1—m
b(0) = —log(1 — ) = log(1 + exp(H))

B 0
~ 1+exp(f)

0 log[1 + exp(6)]

p="(0)= o0

T
= log[——] =6
9(n) = log[-—]
You can easily show that
EY] = pi = nim;
and
Var(Y;) = Uf =n;mi(1 — ;)

In logistic regression the outcome is binary example

e Alive or dead
o Pass or fail

e Pay or Default
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Logit Transformation LOGISTIC REGRESSION

Logit Transformation
We would like to have the probabilities 7; depend on a vector of observed covariates X;
The idea is to let m; be a linear function of the covariates say

m=X;p

where § is a vector of regression coefficients.

We transform the probability 7; to have the odds defined as:

T

odds; =
1-— Yr

Taking the natural logarithm of the odds that is logit or log-odds we have:

. Ty
n; = logitm; = log
1-— T
Solving for 7; we have:
eni
. = logit ' (n;) =
mi = logit ™) = 1+

We are now in a position to define the logistic regression model by assuming that the logit of the probability
m; rather than the probability itself follows a ,linear model.

Logistic Regression Model

Suppose that we have k independent observations v, ..., yx and that the ¢ — th observation can be treated
as a realization of the random variable Y;.

We assume that Y; has a binomial distribution

Y; ~ B(ng, m;)
The above equation defines the stochastic structure of the model.

Suppose further that the logit of the underlying probability m; is a linear function of the predictors

logit(m;) = ;3
Where z; is a vector of covariates and (3 is a vector of regression coefficients. This defines the systematic
structure of the model.

The models defined above is a generalized linear model with binomial response and link logit.

The interpretation of §; represents the change in the logit of the probability associated with a unit change
in the j — th predictor holding all other predictors constant.

Exponetiating equation above we find the odds for the i — th unit given by

T — exp{a)B}

1—7‘(’1'_

This expression defines a multiplicative model for the odds.

Exponentiating we get exp{z}3} times exp{3;}.
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Estimation and Hypothesis Testing LOGISTIC REGRESSION

The exponentiated exp{f3;} represents the odds ratio

Solving for the probability 7; in the logit model gives the more complicated model

o exp{z;5}
" 1+ exp{z}s}

Estimation and Hypothesis Testing
Maximum Likelihood Estimation
The likelihood function for n independent binomial observations is a product of densities.

Taking logs, we find that the log-likelihood function

log L(B) = Y {yilog(m:) + (ni — i) log(1 — m;)}

where m; depends on the covariates z; and a vector of p parameters 5 through the logit transformation.

The working dependent variable z; which has elements

Zi= 1+ Ayi—HiA ni
fi(ni — i)

Where n; are the binomial denominators. We then regress z on the covariates calculating the weighted least
squares estimate

B=XWX)'X'Wz
Where W is a diagonal matrix of weights with entries
wii = fi(ng — fi;)/n
The variance is given by:
var(f) = (X'WX)~!

Goodness of Fit Statistic
Suppose we have just fitted a model and want to assess how well it fits the data.

A measure of discrepancy between observed and fitted values is the deviance statistic, which is given by

Yi Ny —Y;
D=2 {ylo T—&-ni—ilo( ) 3
>y 8(5) + (i = yi)log (—7- )} (3)
where y; is the observed and fi; is the fitted value for the ¢ — th observation.

An alternative measure of goodness of fit is Pearson chi-squared statistic which for binomial data can be
written as

X%’:ZM (4)
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Estimation and Hypothesis Testing LOGISTIC REGRESSION

Tests of Hypothesis

As usual, we can calculate Wald tests based on the large-sample distribution of the m.l.e., which is approxi-
mately normal with mean  and variance-covariance matrix.

In particular we can test the hypothesis,

Hozﬁij

Concerning the significance of a single coefficient by calculating the ratio of the estimate to its standard
error

I

Var( 8)

z =

This statistic has approximately a standard normal distribution in large samples.
The wald test can be use to calculate a confidence interval for j;

The 100(1 — )% confidence that the true parameter lies in the interval with boundaries

Bj :tZl,% VACLT(BJ)

Confidence intervals for effects in the logit scale can be translated into confidence intervals for odds ratios
by exponentiating the boundaries.

Example 1

A researcher is interested in how variables, such as GRE (Graduate Record Exam scores), GPA (grade point
average) and prestige of the undergraduate institution, effect admission into graduate school. The response
variable, admit/don’t admit, is a binary variable.

mydata <- read.csv("admit.csv")
knitr: :kable(head(mydata))

admit gre gpa rank

0 380 3.61 3
1 660 3.67 3
1 800 4.00 1
1 640 3.19 4
0 520 293 4
1 760 3.00 2

The code below estimates a logistic regression model using the glm (generalized linear model) function. First,
we convert rank to a factor to indicate that rank should be treated as a categorical variable.

# convert rank to factor
mydata$rank <- factor(mydata$rank)

# fit the logistic regression model
mylogit <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")

# output a summary table neatly
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Estimation and Hypothesis Testing LOGISTIC REGRESSION

library (gtsummary)
# output without odds ratio

tbl_regression(mylogit)

Characteristic log(OR) 95% CI  p-value

gre 0.00 0.00, 0.00 0.038
gpa 0.80 0.16, 1.5 0.015
rank

1 - -

2 -0.68 -1.3, -0.06 0.033
3 -1.3 -2.0, -0.67 <0.001
4 -1.6 -2.4,-0.75 <0.001

The logistic regression coefficients give the change in the log odds of the outcome for a one unit increase in
the predictor variable.

Both gre and gpa are statistically significant, as are the three terms for rank.
o For every one unit change in gre, the log odds of admission (versus non-admission) increases by 0.002
e For a one unit increase in gpa, the log odds of being admitted to graduate school increases by 0.804

e The indicator variables for rank have a slightly different interpretation. For example, having attended
an undergraduate institution with rank of 2, versus an institution with a rank of 1, changes the log
odds of admission by -0.675.

We can test for an overall effect of rank using the wald.test function.

library(aod)
wald.test(b = coef(mylogit), Sigma = vcov(mylogit), Terms = 4:6)

## Wald test:

##H -

##

## Chi-squared test:

## X2 = 20.9, df = 3, P(> X2) = 0.00011

The chi-squared test statistic of 20.9, with three degrees of freedom is associated with a p-value of 0.00011
indicating that the overall effect of rank is statistically significant.

The odds ratio with their respective CI is given as

# table with odds ratio
library (gtsummary)

tbl_regression(mylogit, exponentiate = TRUE)

Characteristic OR 95% CI  p-value

gre 1.00 1.00, 1.00 0.038
gpa 2.23  1.17,4.32 0.015
rank

1 . N

2 0.51 0.27,0.94 0.033
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Likelihood Ratio Test LOGISTIC REGRESSION

Characteristic OR 95% CI  p-value

3 0.26 0.13,0.51 <0.001
4 0.21 0.09, 047 <0.001

Now we can say that for a one unit increase in gpa, the odds of being admitted to graduate school (versus
not being admitted) increase by a factor of 2.23.

The fitted model is given by:

™
log (m) = BO + 61X1 + /BQXQ =+ 53Xi2 + ﬁ4X¢3 + BSXM

log (%) — —3.98 4+ 0.002X; + 0.80X5 — 0.68X5 — 1.3X, — 1.6X;

We can predict a new variable log of the odds and have:
If the gpa score is 3.8, gre score is 4.0 and the rank of the student is 2
Then:

log (%) — 398 4+0.002x4+0.80x38—068x1—13x0—16x0
— T

The odds is the exponentiate of the log-odds as follows:

ePotB1X1+B2 Xo+B3Xi2+Bax;3+B85x,,
= 1 4 ePotB1Xi+B2Xo+ B3 Xint+Bax ;5 +Psx 4

Likelihood Ratio Test

The likelihood ratio test is used to test the null hypothesis that any subset of B/S is equal to zero.

The likelihood ratio test statistic is given as

A* = —2(L(B) - L(B))

~

where [(() is the log-likelihood of the fitted model l(B(AO)) is the log-likelihood of the reduced model specified
by the null hypothesis evaluated at the maximum likelihood estimate of that reduced model.

The test statistic has a x? distribution with k — r degrees of freedom.

Statistical software often presents results for this test in terms of deviance, which is defined as -2 times
log-likelihood.

We can compare the two models as:
e Fit one model without the rank variable

o Fit another model with the rank variable
# model 1

modell <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
summary (modell)
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Likelihood Ratio Test LOGISTIC REGRESSION

##

## Call:

## glm(formula = admit ~ gre + gpa, family = "binomial", data = mydata)
#i#

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -4.949378 1.075093 -4.604 4.15e-06 **x*

## gre 0.002691  0.001057 2.544 0.0109 *

## gpa 0.754687 0.319586  2.361 0.0182 *

## ——-

## Signif. codes: O ’**%x’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1’ > 1
##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 499.98 on 399 degrees of freedom

## Residual deviance: 480.34 on 397 degrees of freedom
## AIC: 486.34

#i#

## Number of Fisher Scoring iterations: 4

# Model 2

# convert rank to factor
mydata$rank <- factor(mydata$rank)

# fit the logistic regression model
model2 <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary (model2)

#i#

## Call:

## glm(formula = admit ~ gre + gpa + rank, family = "binomial",
#Hit data = mydata)

##

## Coefficients:

#it Estimate Std. Error z value Pr(>|zl)

## (Intercept) -3.989979  1.139951 -3.500 0.000465 *x**

## gre 0.002264 0.001094 2.070 0.038465 *

## gpa 0.804038 0.331819  2.423 0.015388 *

## rank2 -0.675443 0.316490 -2.134 0.032829 *

## rank3 -1.340204 0.345306 -3.881 0.000104 *xx*

## rank4 -1.551464  0.417832 -3.713 0.000205 **x*

##H -

## Signif. codes: O ’*%x’ 0.001 ’*x> 0.01 ’%’ 0.05 ’>.” 0.1 7 > 1
##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 499.98 on 399 degrees of freedom

## Residual deviance: 458.52 on 394 degrees of freedom
## AIC: 470.52

#i#

## Number of Fisher Scoring iterations: 4

The deviance statistic is 480.34 - 458.52 = 21.82. The X%,0.05 = 3.84 thus we conclude that the full model is
better than the reduced model.

By Dr. Mutua Kilai 10



POISSON REGRESSION MODELS

Poisson Regression Models
In this lecture we study log-linear models for count data under the assumption of a Poisson error structure.

Poisson Distribution

A random variable Y is said to have a Poisson distribution with parameter p if it takes integer values
y=0,1,2,... with probability

Pr(Y =y} = 1 5)

We show that the Poisson Model belongs to the exponential family of distribution as:

e_M/l,y

fly) = ) (©)

=exp(ylnp — p—In(ul))

0 =Inp,c(y,¢) =Iny!

b(0) = exp(0),b'(0) = e’ = B(Y) = p,Var(Y) =b"(0) =e’ = p

The canonical link function is g(u) = In(u)

Log-Linear Models

Suppose we have a sample of n observations y1, ys, ..., ¥, which can be treated as realizations of independent
Poisson random variables with Y; ~ P(u;) and suppose that we want to let mean p; depend on the vector
of explanatory variables x;

A simple approach is to take logs calculating 7; = log(u;) and assume that the transformed mean follows a
linear model n; = x}8

Thus we consider a generalized linear model with link log. Combining these two steps we write the log-linear
model as

log(ui) = 33

In the model, the regression coefficient 3; represents the expected change in the log of the mean per unit
change in the predictor x;

Maximum Likelihood Estimation
The likelihood function for n independent Poisson observations is a product of the probabilities.

Taking logs and ignoring a constant involving log(y;!) we find that the log-likelihood function is
log L(B) = > {yilog(i) — pi}

where p; depends on the covariates x; and a vector of p parameters 5 through the log link

It is interesting to note that the log is the canonical link function for the Poisson distribution.
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Log-Linear Models POISSON REGRESSION MODELS

Goodness of Fit

A measure of discrepancy between observed and fitted values is the deviance

Yi N
D=2 {u log(ﬁ) — (yi — fis)}
For large samples the distribution of the deviance is approximately a chi-squared with n — 1 degrees of
freedom.

Thus the deviance can be used directly to test the goodness of fit of the model.

Tests of hypothesis

Likelihood ratio tests for log-linear models can easily be constructed in terms of deviances, just as we did in
logistic regression models.

In general, the difference in deviances between two nested models has approximately in large samples a chi-
squared distribution with degrees of freedom equal to the difference in the number of parameters between
the models, under the assumption that the smaller model is correct.

One can also construct Wald tests aswe have done before based on the fact that the MLE B has approximately
in large samples a multivariate normal distribution with mean equal to the large parameter value 5 and

A

variance-covariance matrix Var(5) = X' WX

Dispersion Tests

The adjusted deviance is defined as the deviance divided by the degrees of freedom.

A value closer to 1 indicates that there is a satisfactory goodness-of-fit.

Usually a value of greater than 1 indicates signs of over-dispersion.

Overdispersion means that the variance of the response Y is greater than what’s assumed by the model.
Over-dispersion can occur as a result of:

e Clustering: Different units or observations may have different levels of inherent variability leading to
overdispersion

o Heterogeneity: Correlation or dependence between observations within clusters can contribute to
overdispersion

In some cases, there may be under-dispersion, that is where the conditional variance is less than the condi-
tional mean.

Example

dataset <- read.csv('"poisson.csv")
dataset$prog <- factor(dataset$prog,

levels = 1:3,

labels = c("General", "Academic", "Vocational")
)

ml <- glm(num_awards ~ prog + math, family = poisson, data = dataset)

tbl_regression(ml)

Characteristic log(IRR) 95% CI p-value

prog
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Log-Linear Models POISSON REGRESSION MODELS

Characteristic log(IRR) 95% CI  p-value

General — —

Academic 1.1 0.44, 1.9 0.002
Vocational 0.37 -0.49, 1.3 0.4
math 0.07 0.05, 0.09  <0.001

Evaluating the model

The goodness-of fit is assessed via the chi-square test for goodness of fit.

# Check <f the model fits the data, this ts the null hypothesis.
with(
ml,
cbind (
res.deviance = deviance,
df = df.residual,
p = pchisq(deviance, df.residual, lower.tail = FALSE)

)
)
## res.deviance df P
## [1,] 189.4496 196 0.6182274

We can compare two models using the ANOVA table and get the chisquare value.

Here we fit a second model as:

m2 <- glm(num_awards ~ math, family = poisson, data = dataset)

We compare

# Attention on the output: Model 1 is actually m2
anova(m2, ml, test = "Chisq")

## Analysis of Deviance Table

##

## Model 1: num_awards ~ math

## Model 2: num_awards ~ prog + math

## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

## 1 198 204.02

## 2 196 189.45 2 14.572 0.0006852 **x*

## ——-

## Signif. codes: O ’**%x’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > > 1

Here we see that the fitted model that includes the prog variable is a significantly better predictor of
num__ awards.
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RIDGE REGRESSION

Ridge Regression

Ridge Regression is a technique for analyzing multiple regression data that suffer from multicollinearity.

When multicollinearity occurs, least squares estimates are unbiased, but their variances are large so they
may be far from the true value.

Ridge regression is carried out on the linear regression model
Y=X[+¢

where

Y is the n x 1 vector of observations of the dependent variable
X is the N x K matrix of regressors

B is the k x 1 vector of regression coeflicients

€ is the n x 1 vector of errors

Ridge Estimator

The objective function is given by

f(B)=(—XB)(y—XB)+ 'S

We differentiate the function with respect to 5 and set the result equal to zero and have:

OB) _ _oxT(y— xp)+ 205 =0

op
Solving for
XTxp+Mpg=XTy
Then
Bridge = (XTX + M) XTy

Where A is a positive constant

Bias and Variance of Ridge Estimator

We derive the bias and the variance of the ridge estimator under the commonly made assumption that
conditional on X, the errors have a zero mean and a constant variance o and are uncorrelated.

E[e|X] =0

Varle| X] = o*I

2

where o° is a positive constant and I is the n x n identity matrix.
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Bias and Variance of Ridge Estimator RIDGE REGRESSION

Bias

The conditional expected value of the ridge estimator ﬁ \ 1S

E[BX] = (XX + A\)'XTXB

which is different from 5 unless the A =0

The bias of the estimator is
E[fX] - 8 = [(XTX + A1)~ - (XTX) 7| X7 x5

Proof

We can write the ridge estimator as

Br = (XTX +AI)"1xTy
= (XTX + XD XT(XPB) +e (7)
= (XTX + XD XTXB+ (XTX + M) 71X Te

Therefore
Elf]) = (XTX + M) 'XTXB + (XTX + M) XTE[¢e|X]

= (XTX 4+ AN XTXB+ (XTX + M) XT %0 (8)
=(XTX+ ) ' XTXp

The ridge estimator is unbiased if and only if
(XTX + AN XTX =1

Variance

The covariance of the ridge estimator is given by:

Var[yX] = o*(X"X + A0 ' XTX(XTX + A1)~

Proof

Remember that the OLS estimator B has conditional variance

Var[] = o?(XTX)™!

We can write the ridge estimator as a function of the OLS estimator

Br=(XTX +AI)"'xTy
= (XTX +XD)IXTX(XTX)"1XTy (9)
= (XTX +A)'XTXp

By Dr. Mutua Kilai 15



How to choose A

RIDGE REGRESSION

Therefore:

Var[ﬂi\]

= (XTX +ADXTXVar[B[(XTX + AN~ 1xTx)T
= (XTX + M) XTXVar[aXTX(XTX + A7}
= (

(10)

XTX 42D XTXo?(XTX) I XTX(XTX + A1)~
=2 (XTX + A XTX(XTX + D)7

How to choose )\

The most common way to find the best A is by using leave-one-out cross-validation.

The steps are as follows:

o We choose a grid of p possible values of A1, Ag, ..., A, for the penalty parameter

o for i = 1,..., N we exclude the i — th observation (y;,z;) from the sample and use the remaining
n — 1 observations to compute p ridge estimates of 8 denoted by 3y, and compute p out-of-sample

predictions of the excluded observation

e We compute the MSE of the predictions

N
1 X
MSEy = + > (Wi — i)’
=1

e We choose as the optimal penalty parameter A the one that minimizes the MSE of the predictions

Example

As the beginning of ridge regression, it is recommended to standardize the predictors. You can still carry
out ridge regression without doing so, but standardization would improve the effect of ridge regression, as it
makes the shrinking fair to each coefficients. Luckily, the function that we are going to use here automatically
standardizes the data, so we don’t need to do the standardization by ourselves.

We use the MASS package in R
# loading the data

data <- read.csv("ridge.csv")

# package to use

library(MASS)

# model with a range of lambdas

fit = lm.ridge(hipcenter ~ ., data, lambda = seq(O,

We can observe how the coefficients shrink as A grows larger:

par (mar = c(4, 4, 0, 0), cex = 0.7, las = 1)

.4, 1e-3))

matplot(fit$lambda, coef(fit), type = "1", ylim = c(-1, 3),
xlab = expression(lambda), ylab = expression(hat(beta)))
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How to choose A RIDGE REGRESSION

3_
2 -
R
o_
_1_
I I I I I
0.0 0.1 0.2 0.3 0.4

To select the optimal value of A we use select function

select(fit)

## modified HKB estimator is 5.425415
## modified L-W estimator is 3.589434
## smallest value of GCV at 0.4

So the optimal value of A is at 0.4

par(mar = c(4, 4, 0, 0), cex = 0.7, las = 1)
plot(names(£it$GCV), fit$GCV, type = '1',
xlab = expression(lambda), ylab = "GCV Score")
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DETECTING OUTLIERS IN REGRESSION MODELS

45.5
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Detecting Outliers in Regression Models

Outliers are observations that appear inconsistent with the rest of dataset.
A more precise definition, they are observations that are distinct from most of the data points in the sample.
There are many methods of detecting outliers in regression models. They include:

e Graphical methods
e Analytical methods

Graphical Methods

The graphical methods include scatter graph, boxplot, williams graph, Q-Q plot and graph of predicted
residuals

Scatter and Box plot

Scatter plot is a line of best fit (alternatively called “trendline”) drawn in order to study the relationship
between the variables measured. For a set of data variables (dimensions) X7, X, ..., Xithe scatter plot
matrix shows all the pairwise scatter plots of the variables on the dependent variable.

A box plot is a method for graphically depicting groups of numerical data through their quartiles (i.e. Mean,
Median Mode, quartiles). Box plots may also have lines extending vertically from the boxes (whiskers)
indicating variability outside the upper and lower quartiles. It is also called box-and-whisker plot and box-
and-whisker diagram. Outliers may be plotted as individual points and it can be used for outlier detection
in regression model, where the primary aim here is not to fit a regression model but find out outliers using
regression and to improve a regression model by removing the outliers.
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# loading the data

data <- read.csv("ridge.csv")
# model

fit = lm(hipcenter ~ ., data)
# extract the residuals

res <- fit$residuals

# boxplot of the residuals

boxplot (res)
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Analytical Methods

The analytical methods include:

e predicted residuals

e Standardized residuals
¢ Jack-nife residuals

¢ Cook’s distance

o Atkinsons measure
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Studentized and Standardized Residuals

The Standardized residuals are given by:

€ €
€54 = 7 =

TN Ty

Studentized residuals with large absolute values are considered large. If the regression model is appropriate,
with no outlying observations, each Studentized residual follows a t distribution with n-k-1 degrees of freedom.

If the Studentized residual is divided by the estimates of its standard error so that the outcome is a residual
with zero mean and standard deviation one, it becomes standardized residual denoted by
€

sd(o)

€ST.i =

The standardized residuals, d; > 3 potentially indicate outlier

By Dr. Mutua Kilai 20
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Response Surface Methodology

Response Surface Methodology is a collection of statistical and mathematical techniques used for the purpose
of:

o Setting up a series of experiments (design) for adequate predictions of a response y.
« Fitting a hypothesized (empirical) model to data obtained under the chosen design.

o Determining optimum conditions on the model’s input (control) variables that lead to maximum or
minimum response within a region of interest

The response surface ¢(.) relates the expected response to the experimental variables

E(y) = ¢(x1, ..., xk)

The goal of a response surface design is to define n design points x1 ;...,zx j,j = 1....n and use a reasonably
simple yet flexible regression function f(.) to approximate the true response surface ¢(.) from the resulting
measurements y; so that f(z1,...,2x) = ¢(x1, ..., Tx).

We discuss two commonly used models for approximating the response surface:

e first-order model: requires only a simple experimental design but does not account for curvature of the
surface and predicts ever-increasing responses along the path of steepest ascent.

e second-order model: allows for curvature and has a defined stationary point (a maximum, minimum,
or saddle-point), but requires a more complex design for estimating its parameters.

First Order Model

The first-order model for k& quantitative factors (without interactions) is

k
y=f(@1,..xx) +e=Bo+ B+ .+ Brr+e=Po+ Yy _Biwi+e
=1

We estimate its parameters using standard linear regression; the parameter (§; gives the amount by which
the expected response increases if we increase the i — th factor from z; to x; + 1 keeping all other factors
fixed.

Without interactions, the predicted change in the response is independent of the values of the other factors
and interactions could be added if necessary.

The predicted response is:

k
§=P6o+>_ Bixi
i=1

Example 1

Using the data named first_order.csv fit a first order model.

data <- read.csv("first_order.csv")
# loading the package

library(rsm)
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First Order Model RESPONSE SURFACE METHODOLOGY

# fit the first-order model

rsm.model <- rsm(y ~ FO(x1l, x2), data = data)

summary (rsm.model)

##

## Call:

## rsm(formula = y ~ FO(x1, x2), data = data)

##

#it Estimate Std. Error t value Pr(>ltl)

## (Intercept) 70.41667 3.32793 21.1593 5.521e-09 **x*
## x1 1.75301 0.89477 1.9592 0.08175 .
## x2 0.61446 0.89477 0.6867 0.50956

## ——-

## Signif. codes: O ’**%x’> 0.001 ’*x> 0.01 ’%’ 0.05 ’.” 0.1 > > 1
##

## Multiple R-squared: 0.3238, Adjusted R-squared: 0.1736
## F-statistic: 2.155 on 2 and 9 DF, p-value: 0.1719
##

## Analysis of Variance Table

##

## Response: y

#i# Df Sum Sq Mean Sq F value Pr(>F)

## FO(x1, x2) 2 572.80 286.401 2.155 0.17191

## Residuals 9 1196.12 132.902

## Lack of fit 6 1169.37 194.894 21.857 0.01424

## Pure error 3 26.75 8.917

##

## Direction of steepest ascent (at radius 1):
## x1 x2

## 0.9437066 0.3307837

##

## Corresponding increment in original units:
#i# x1 x2

## 0.9437066 0.3307837

We can fit a first-order with two-way interaction model as:

# fit the first-order with two-way interaction model.

rsm_twoway <- rsm(y ~ FO(x1l, x2) + TWI(xl, x2), data = data)
summary (rsm_twoway)

##

## Call:

## rsm(formula = y ~ FO(x1, x2) + TWI(xl, x2), data = data)
##

#t Estimate Std. Error t value Pr(>ltl)

## (Intercept) 70.41667 3.15546 22.3158 1.719e-08 **x
## x1 1.75301 0.84840 2.0663 0.07265 .

## x2 0.61446 0.84840 0.7243 0.48954

## x1:x2 -7.75000 5.46542 -1.4180 0.19394

## ——

## Signif. codes: O ’**x> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 7 > 1
##
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## Multiple R-squared: 0.4596, Adjusted R-squared: 0.257
## F-statistic: 2.268 on 3 and 8 DF, p-value: 0.1576
##

## Analysis of Variance Table

##

## Response: y

#i# Df Sum Sq Mean Sq F value Pr(>F)
## FO(x1, x2) 2 572.80 286.401 2.3970 0.1529
## TWI(x1, x2) 1 240.25 240.250 2.0107 0.1939
## Residuals 8 955.87 119.483

## Lack of fit 5 929.12 185.823 20.8400 0.0155
## Pure error 3 26.75 8.917

#i#

## Stationary point of response surface:

#i# x1 x2

## 0.07928488 0.22619510

#i#

## Eigenanalysis:

## eigen() decomposition

## $values

## [1] 3.875 -3.875

##

## $vectors

## [,1] [,2]

## x1 -0.7071068 -0.7071068

## x2 0.7071068 -0.7071068

A plot of the model

persp(rsm.model, x2 ~ x1, zlab = "y", main="first-order model")
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first—order model

The Second-Order Model

The second-order model adds purely quadratic (PQ) terms z? and two-way interaction terms x;.2; to the
first-order model such that the regression model equation becomes

k k k
y=flx1,....,zx) +e=Bo+ Zﬁixi + Zﬁzﬂ% + Zﬁzjxi%‘ +e
i=1 i=1 i<j

and we assume a constant error variance Var(e) = o2 for all points.

For example the two-factor second-order response surface approximation is

y = Bo + B1a1 + Baw2 + B1177 + Poows + B1om1T2 + e

only requires estimation of six parameters to describe the true response surface locally.

The second-order model allows curvature in all directions and interactions between factors which provides
more information about the shape of the response surface.

library(rsm)
# fit second-order (SO) model

rsm_so <- rsm(y ~ SO(x1, x2), data = data)
summary (rsm_so)
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The Second-Order Model RESPONSE SURFACE METHODOLOGY

##

## Call:

## rsm(formula = y ~ S0(x1, x2), data = data)

##

#it Estimate Std. Error t value Pr(>lt])

## (Intercept) 72.927104 4.026565 18.1115 1.824e-06 ***
## x1 1.753012 0.872972 2.0081 0.0914 .
## x2 0.614458 0.872972 0.7039 0.5079

## x1:x2 =7.750000 5.623726 -1.3781 0.2174

## x172 -0.137035 0.110586 -1.2392 0.2616

## x272 -0.044442 0.110586 -0.4019 0.7017

## ———

## Signif. codes: O ’*xx’ 0.001 ’**x’ 0.01 ’x> 0.05 ’.” 0.1 > ’ 1
##

## Multiple R-squared: 0.5709, Adjusted R-squared: 0.2133
## F-statistic: 1.597 on 5 and 6 DF, p-value: 0.2912

##

## Analysis of Variance Table

##

## Response: y

#it Df Sum Sq Mean Sq F value Pr(>F)
## FO(x1, x2) 2 572.80 286.401 2.2639 0.18511
## TWI(x1, x2) 1 240.25 240.250 1.8991 0.21736
## PQ(x1, x2) 2 196.83 98.417 0.7780 0.50071
## Residuals 6 759.03 126.505

## Lack of fit 3 732.28 244.094 27.3750 0.01111
## Pure error 3 26.75 8.917

##

## Stationary point of response surface:

#i# x1 x2

## 0.07672176 0.22348192

##

## Eigenanalysis:
## eigen() decomposition

## $values

## [1] 3.784538 -3.966015
##

## $vectors

## [,1] [,2]

## x1 0.7028703 -0.7113180
## x2 -0.7113180 -0.7028703

A second-order model without interactions can be fitted in R as

# Fit the second-order without tnteractions model
rsm_som <- rsm(y ~ FO(x1l, x2) + PQ(x1l, x2), data = data)
summary (rsm_som)

##

## Call:

## rsm(formula = y ~ FO(x1, x2) + PQ(x1, x2), data = data)
##

#t Estimate Std. Error t value Pr(>lt])

## (Intercept) 72.927104 4.277356 17.0496 5.856e-07 ***
## x1 1.753012 0.927344 1.8904 0.1006
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RESPONSE SURFACE METHODOLOGY

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

x2 0.614458 0.927344 0.6626 0.5288

x172 -0.137035 0.117474 -1.1665 0.2816

X272 -0.044442 0.117474 -0.3783 0.7164

Signif. codes: O ’#x*x’ 0.001 ’*%’ 0.01 ’%’ 0.05 >.” 0.1’
Multiple R-squared: 0.4351, Adjusted R-squared: 0.1123

F-statistic: 1.348 on 4 and 7 DF, p-value: 0.3418
Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)
FO(x1, x2) 2 572.80 286.401 2.0062 0.20476
PQ(x1, x2) 2 196.83 98.417 0.6894 0.53297
Residuals 7 999.28 142.754
Lack of fit 4 972.53 243.133 27.2672 0.01077
Pure error 3 26.75 8.917

Stationary point of response surface:
x1 x2
6.396220 6.912965

Eigenanalysis:

eigen() decomposition
$values

[1] -0.04444242 -0.13703501

$vectors
[,1]1 [,2]

x1 0 -1

x2 -1 0

A countour plot is given as

# second-order model

contour (rsm_som, ~ x1 + x2, image = TRUE, main="second-order model")

By Dr. Mutua Kilai

26



Choice of a response RESPONSE SURFACE METHODOLOGY

second-order model

x1

Choice of a response

Some important properties of a response surface design include:
¢ Generation of a satisfactory distribution of information throughout the region of interest
e Closeness of § to y over R
e Good detectibility of lack of fit

o Insensitivity (robustness) to extreme observations and to violations of the usual normal theory assump-
tions.

o Ability to perform experiments in blocks.
o Extendibility to a higher-order design.

¢ Requiring a small number of experimental runs.
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